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The parametric couplings of a finite amplitude Alfvevave in a multicomponent plasma are investigated
including the effect of damping. The important case of a fusion plasma with deuterium, tritiuma, panticle
ions, heated by neutral beam injection, is analyzed in detail. Because of the modification in the linear disper-
sion relation caused by the drifting ions, there appear many couplings to sound waves and an electromagnetic
modulational instability. The threshold on the pump amplitude is determined as a function of the damping
rates. The relevance of our results to the stability of toroidal Alfeéggenmodes in tokamaks is discussed.
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PACS numbg(s): 52.35.Bj, 52.35.Fp, 52.55.Pi

[. INTRODUCTION collisional damping to model the effect of kinetic and con-
tinuum damping. We consider waves propagating in the di-
The decay of large amplitude Alfmeand ion cyloctron rection of a constant magnetic field in an uniform plasma.
waves by nonlinear coupling with sound waves and otheOur formulas are directly applicable to space plasmas. Al-
modes has been studied for a long tirfee, e.g., Refs. though our calculations do not include toroidal and kinetic
[1-6]). Recently, this subject has received attention in twoeffects, they can also be considered as a first step towards the
different areas. Firstly, it was recognized that nonlinear couevaluation of some processes affecting the decay of TAE's in
pling may play a quite important role in the saturation of fusion plasmas that have not been taken into account so far.
toroidal eigenmodeéTAE’s) in tokamak fusion reactors, re- The dispersion relation for the parametric instabilities is de-
ducing their potential danger for the achievement of ignitionrived in the next section. We follow an approach that pre-
[7—11]. On the other hand, space physicists realized that theerves the structure of the linear dielectric tensor, making it
presence of drifting species in multicomponent plasmas afeasier to introduce the influence of different physical mecha-
fects strongly the linear and nonlinear stability of ion cyclo- nisms, in particular collisional damping, than in derivations
tron and Alfven waves, modifying substantially the picture available in the recent literatuf@3—17. Collisions are con-
of physical processes that are relevant for the heating ansidered as a first order effect and, therefore, are kept in the
acceleration of particles in the solar wiiti2—14. The re- linear part of the dielectric tensor only. We use a Krook
search related to the saturation of TAE's has been concemnodel with different collision frequencies for the various
trated on the coupling between magnetohydrodynamispecies. Landau and continuum damping can be mocked up
modes assuming that a broad spectrum may be excitday properly choosing the values of the different collision
[7-11]. Although in all these works kinetic and toroidal ef- frequencies. The numerical solutions of the dispersion rela-
fects are taken into account, the influence of different spetion are presented in Sec. llI for the case of an Atfweave
cies, including drifting ones, which are present in fusionin a fusion plasma scenario. The presence of many ion spe-
plasmas heated by neutral beam injection, has not been coaies, drifting ones in particular, with their associated sound
sidered. In space plasmas the geometry is rather simple andave branches, opens up many channels for parametric cou-
the presence of many ionic species can be readily included iplings. The saturation of TAE modes by mode coupling has
the model. However, the study of parametric instabilities inbeen considered by different authors. Hahm and Chen have
this context has been carried out without including dampingstudied a many mode process in the random phase approxi-
which is very important for sound waves and for the daugh-mation[9]. Saturation occurs due to energy transfer down to
ter electromagnetic waves when their frequency is close temaller wavelengths and eventually damping into the con-
the resonance of an ion component. The sound waves itnuum. Vlad and co-workers have investigated a nonlinear
fusion plasmas may be not heavily damped, in particular thenagnetohydrodynamic€HD) process in which the inter-
ones supported mainly by a drifting species; but the daughteaction between two modes leads to a modification of the
Alfvén waves may occur close to the continuum and beequilibrium poloidal field such that the gap in the continuum
strongly damped. Therefore, in both areas the inclusion oAlfvén spectrum is altered, causing a frequency shift and,
damping is essential to calculate the corresponding threshiherefore, saturatiojll]. The beat between two Alfve
olds on the pump amplitude and to evaluate the relevance afaves has also been considered by Gang and Lelja8uf
the various parametric processes. It is interesting to note that the saturation amplitudes encoun-
In this paper we investigate the parametric couplings otered in these works are all of the same order, Bg/B, of
ion-cyclotron and Alfve waves with sound waves in multi- the order of a few percent, wheBs is the radial component
component plasmas described by fluid equations includingf the perturbed magnetic field aj the equilibrium mag-
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netic field. It is important to stress that the process that wavith = w,=w—kV,. For adiabatic perturbations, pressure
consider here is rather different, i.e., coherent mode couplingnd density are related Bp./ps= yong/ng, wherey; is the
between electromagnetic and sound waves in the presence mittio of specific heats.
collisional damping. As we show in the numerical calcula- In the following we will derive the complete dispersion
tions, this mechanism may be relevant for amplitudes of theelation for the coupled waves in a way in which the nonlin-
perturbation also of the order of a few percent. ear contribution to the plasma dielectric tensor is explicitly

Continuum damping of the Alfve wave and Landau shown. We will present the derivation of the dispersion re-
damping of the sound wave are simulated by the inclusion ofation for a collisionless plasma. The effect of collisions can
a collision frequency in the corresponding linear terms of thehen be included by modifying the linear part of the disper-
dispersion relation. We find that a threshold for the parametsion relation.
ric process occurs only if the electromagnetic daughter wave The coupling of the sound waves with the pump wave
is damped. Otherwise, if one assumes that the daughter waexcites the daughter waves with wave numbers=k,*+k
is unstable, which corresponds to a negative collision freand frequencies.. =wy*w. We define, accordingly,
guency, there is no threshold independent of the damping of
the sound wave. Discussions and conclusions are presentedE, = 6E  exp(ik;z—iw.t)+ SE* exp(ik* z—iw*t), (4)
in the last section.

8B, =8B expik z—iw, t)+ 6B* exp(ik* z—iw*t), (5)

Il. DISPERSION RELATION . . % R A
OV, =dv, expik z—iw t)+ v expikXz—iw™t),

Let us first briefly review the derivation of the dispersion (6)
relation for electromagnetic ion cyclotron wavégICW)
propagating along the external magnetic fiéldin an uni- 8 1s= 0] +EXPik Z—iw t)+ )% explik* z—iw*t).
form plasma. The equation of motion for each species is (7)
given by
For low frequency waves the electrons can be considered
FIVA Vs 1 Vps massless, so that the left-hand siddHS) of Eq. (1) for
mg| — + Zs—)zqs(E+—Vs><B - , (D electrons is equal to zero. The perpendicular components
at 9z c s :
give
whereE andB are the electric and magnetic fields,, qs, COE, —i(B,6v, o— V6B, —B, 6ug)=0 8

mg, and ng are the velocity, charge, mass, and density of

speciess, respectivelyps is the pressure, antlis the speed (V,, drift speed of electronsand the parallel component is
of light (cgs units are used throughpuéVe assume that the

unperturbed plasma is quasineutral and current free. Repre- 0% . d

senting the fields of the circularly polarized waves by COE+IM{VIc6B, +B, svTef+ en YeKTe = oNe=0.
B, =Bx+iB,=Bexp(koz—iwogt) and E,=E,+iE, (9)
=—iE exp(koz—iwgt), we solve Eg. (1) taking

V) 6= Vs +iVy =V explikoz—iwgt). Combining Eq.(1)  The equation of continuity, EG3), gives a link betweeu,
with Maxwell’'s equations, we obtain the dispersion relationand én,, du,= w.on/kn,. Thus, one can obtaifv , , and

for low-frequency EICW, that is, on, as functions of the electric and magnetic fields from Egs.
(8) and(9).
, Am mjnj(wo—kij)z An expression for the electron current can be derived
K==z > == (2 from Eq.(8),
B2 T [1—(wo—koV)/QY]
_ _ cen | . B [w g\ kdug
whereV; and Q;=q;B,/m;c are the zero-order drift speed Oj +e= ; lw+edBs— 50 | 1~ k_o) oo | (10

(in the z direction and cyclotron frequency of ion specigs

respectively. In deriving Eq(2), we have taken the limit wherew.. .= w. — VK. . There may exist several groups of

Qg:ghl‘;"/nd the sum on the right-hand side is over ion Speg|acirons in the plasma, with different densities and drift ve-

The di _ lation i id for fini litude i locities. However, as we shall see immediately, under the

| € |sper3|onWre atlon_és vall orhlnlte amp 'rt]“ '€ 10" onditions we set here, a detailed specification of these elec-
cyclotron waves. WWe consider one such wave as the "pump’y oy hanylations is not necessary. In fact, the total electron
wave. To investigate the nonlinear couplings, the wave

| is th bed by includi | I.'current contribution does not depend explicitly on the value
plasma system Is then perturbed Dy including small ampli¢ the glectron drifts. A sum of Eqi10) over all possible
tude longitudinal sound waves with wave numberand

lect I t
frequency o, i.e., 6V,=Rdduexpikz—iwt)], OE, electron groups leads to
=R 8¢ exp(ikz—iwt)], and Sng=Re sneexplkz—iwt)]. 1 [(=i)

From the equation of continuity, we obtain > 6 e~ g
e z| W=+

(au.E ene_ktE eneve) =
e e

kdug ) ) Blw wg
5ns—nsRe{ o explikz—iot)|, ) ibe k—o)g esn,

. (11
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As we can see only the total zero order electron current en- icQ;[1 B . -
ters in Eq.(11), and we assume that the configuration is o= | g 96+ 5z (Cj 6B+ +C; SE )|, (17
current free, so thaten,V, is balanced by the total longitu- =L z
dinal zero order ion current. Similarly, due to charge neutraly, here
ity, 2en, is balanced by the total zero order ion charge den-
sity. Therefore, the first two terms on the right-hand side yivik? [ B)?2 1
(RHS) of Eqg. (11) are canceled by similar contributions of S=1- J—ZJ (B_) A A A (18
the total ion currentXéj . ;. In addition, the range of fre- @j z 0=
guencies considered here allows us to apply the quasineutral- K
ity approximation; i.e.Xedn, is balanced by the ion charge Crf=_= ( Wxj  Woj ) (19)
perturbation. Hence, also the third term on the RHS of Eq. o (KA KAy
(11) is eliminated by a corresponding ion contribution if )
Poisson’s equation is replaced by the charge neutrality con- Since
dition, . 0
5ij=qj(nj05Vlj+V“5nj),
§U]k
4w qin —_—=4m2 e, (12)  then
i i
The RHS of this equation is computed from 0] +j=0qjnj| dv+j;— B, 2A0w Ko ou; |. (20
@ _ e SE+ E (C*SE,+C 8E_)| (13 Thus, from this relationship and E@L5), we can express the
Ne KkyKTe B, * B sum of ion contributions as
[which follows from Eqgs.(8) and(9) by eliminating v ], ) Fic
where ) 2 djs=g 022 O —ke > gjn;V
j 70+ ] ]
C*=1—Kiwo/w-Kq. c min; w4
a2 ’AJ _‘J)aEi

We note, as commented above, tat does not depend on z *
any particular value of the electron drift velocities, . Fi- cB min; (e kng
pally, the tptal_perturbed electron charge density that enters + 282 2 v r+w°j_ o du;
in Eq. (12) is given by z | 0j i 0]

. B [w wg

I B + _ &N .

47@ edfo= | 66+ 5 (C*OE, 2B, ( K ko); 9 51, (22)
z
Are?n Ampee’s law neglecting the displacement current term is
+CSE)|D = (14)
e YeKTe

CkeOBo=—4mD, 8j.j—4mD, Sjae. (22)
In the preceding equation we are admitting the presence of . ¢

electron populations with differept tempergtures. ' We see that the perturbed electron current, &8), can-
We can now focus our attention on the ion dynamics. Wegg|s the ion current terms in E(1) that are independent of
obtain from Eq.(1) the ion mass. Therefore, E(R2) can be written as
5U+j:i(i 5UJ—E5B+), (15) kz_z 4rm;n; w2 |SE. =+ i—w 4mm;n;
= BALj \2A ke 77 4 BIAL, T T 274 BZA
and kwp;  wx
X| wgi— —— + —
2 2 0j ko(l)] Aij
k YiUsj q; |. B Wo;
1- 7— | OUj=—— | 166+ — K (6B_ B
j m; w;j c OBZAOj X— 5UJ ) (23)
c

: (16)

—6B,)+dov_j—dv +j) where the sums are over ions only. These relationships can

be expressed as
wherev gjz p;/n;m; is the square of the thermal speed of the
jth species,  wg=wg— VKo, w+j=w.— VK, (N2 —L.)SE. =+
AOJEl—(wOJ/QJ),andAijfl—(wi]/Q]) El|m|nat|ng the = - -
ov's from Eqg. (15, and using Faraday's law,
w.6B.=*ick.SE. , we find that with the following definitions:

|
o2 RiBou;, (24)
J
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9 L __4mc E min; o< (25
e BT Y AW
and
C2 4ﬂTmJnJ kﬁ)g] (D+J'
o= wo— i+ | (26)
=l Zwi BgAOJ ) kow]' Atj

Taking into account the expressions for the;’s given
by Eg. (17), and defining the paramete4=B/B,, which

measures the amplitude of the “pump” wave relative to the

background magnetic field, we may write

(NG —L,)oE ==

(Qﬂzﬂcr) B?
J

;S | B? O+
QjR+jCj‘> B2
—; (—sz,- 57 -

z
. (QiRﬂ) B
]

=—{A’R,,6E,+ A’R, _SE_

+ AR, 85} (28)
and
QR_C\ B2
2 _ - et Mt el
(N> —L_)8E_ +; s >§§55+
Q,-R_jcj‘> B?
+ —L SE_
; ;S | B
QR_:\ B
[ A
+2( s | B (29)
={A’R_,6E,+ A’R__SE_
+AR_ 56}, (30)

In Eq. (28), the quantitieRR, , , R, _, andR_ represent the
coefficients of A%5E, , A%5E_, and A& in Eq. (27), re-
spectively. Similarly, in Eq(30), the symbolsR__, R__,
andR, have the same meaning with respect to &§).

4115

In the limit of zero pump intensityB=0, Egs.(27), (29),
and (31) give the linear dispersion relations of sideband
EICW's,n%=L. , and sound waves;=0. The LHS of Egs.
(27), (29), and(31) corresponds to the linear approximation
of the modes, and the RHS represents the coupling of the
modes with the pump.

In matrix form, Egs.(28), (30), and(32) become

ni_L++~A2R++ A2R+— ARy
_A2R7+ nZ,_Lf_.AZR,, _‘AR*H
— ARy, — AR, €
SE.
x| 6E_ | =0 (34)
)

The dispersion relation is thus given by

(nF—L(n2 =L )+ AH(Res TRy Ry(N2—L )
—(R_g+R_R)(NT—L )+ AY(R, R,
“RiyR_)g+R_RR+R_,R_Ry,
“R__R Ry =R R_R_}

=0. (35

We remark that no approximations have been made with
respect to the strength of the pump in the derivation of the
dispersion relation. In particular, the quantitigs Eq. (18),
which appear in the definition @f, have a term proportional

to A% i.e., to the square of the normalized pump amplitude,
which can be significant for finite pump amplitude, and
modify the propagation of the sound waves. This effect is not
included, e.g., in Ref[2] in view of the approximations
adopted there. The coefficiem‘sf are formed by variables
corresponding to transverse waves only. EquatRB) con-
tains all the parametric couplings predicted by a multifluid
model and can be used to compute the growth rates of the

An equation for the longitudinal component may be de-P'OCESSES.

rived from Eq.(12). It can be expressed as

47qin;C; 47re2ne> B
S5E= -Cc* — 6E
0|2 s 2 kTl B O
47qin;C; Ame’n, | B
T —cY | —sE_
; mJ (1)]- S] Ee J’eKTek BZ
(31
={AR,, 6E .+ AR,_SE_}, (32
with
4me’n, 4mqln,
= . 33
l ; YeKTK® T mofs %9

The nonlinear dispersion relation, E35), which de-
scribes all the parametric instabilities generated by the EICW
pump, does not contain damping effects and, therefore, does
not give information about the thresholds of these instabili-
ties. However, it is possible to modify the LHS of E¢87),

(29), and (31) to include heuristically simple collision cor-
rections in the linear dielectric ternis. and . The ratio-
nale is that since the instability thresholds are expected at
small values of4, then the RHS of Eqg27), (29), and(31)

are considered as corrections to the linear part. Therefore, the
addition of a damping effect is included in the lindaHS)
terms only, while the RHS are maintained collisionless as
before. In the dynamic equations of ions, Efj), we add a
term —m;»;V; in the RHS, where; is a phenomenological
collision frequency to model wave damping. Then, the linear
equationn? — L, =0 for the sidebands becomes
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A [wogExw—(KgEK)Vi][woE (w+ivi)—(kexK)V]
k) 2= m. i i i
(ko= k) E{; nim; 1—[wox(w+iv) — (ko= k)V,1/Q; ' (36)
|
which can be compared with E€R) to see the changes in- Y. X, Xoi
troduced by thead hoccollision term. A similar modification Cli=— | —L - |, 43
must be introduced ;. Xe \Y2ALj YoAg
For the purpose of numerical analysis and applications,
we introduce normalized variables using the cyclotron fre- Cio1 Y- Xo 44
quency(), and the Alfvan velocity,v ,= (B 2/47n,m;) Y2, of TTYXS (44)
speciesj =1 as normalization values, following the notation
of some recent literaturgl3,14). The normalized quantities B Y2 1
are then defined asp;=n;/n;, n.=nny, m m;/my, sjzl_:J_2+A2__—_, (45)
q] q /ql, X= Q)/Ql, Y= kVA/Ql! Xo—wolﬂl, YO mJ XJ AOjA+jA—J
—koVA/Q]_, UJ:VJ/VA1 XJEX_U]Y, XOJ:XO UJY ,
X+—X0+X Y+—Y Y XU_—X U Y+ ’ AO] 1 e ne 1
=1—(m/q)Xe;, A.;=1—(m/g)X.;, ,8, mjv 4/ —=—> —. (46)
myv 4, and B.=y.KTJ/mv 3. The followmg relationships Be 1 e (2ne) Be
hold:
The dispersion relation is expressed as
D,6E,=—{A’R,,6E, + AR, _SE_+ AR, 65}
— = L, I D.D_D;+ A*(R.D;+Ry:R+)D-—(R-D,
qR+jCj | B 9R+iCj 4
=_ BN et I N U g I +R-R_))D}+ AY{(R;_R_.—R,R_)D
; [( m%S | B2 SE. XS, ~R-D4} 1Ry +—R{R_)Dy
_ TR _RR+R_R_Ry—R_R Ry
B g | IR ) B € 3 R,R,_R_}=0 47
Bg - ijjsj Bz ) ( 7) + M- 7II}_ g
) ) in nondimensional variables suitable for numerical work.
D_6E_={A°R_,0E, +A°R__SE_+AR_6&} The effect of damping, which will lead to thresholds for
~F\ n2 —n the excitation of parametric instabilities, can be included in
—E [(qJR iCi ) B_2 SE, + qE—JCJ) the dispersion relation, Eq(47), by replacing. X2 . by
i m;X;S; | B; m;X;S; X.j(X.jxiv;) and A.; by - (my/g)) (X =i ) in the
) _ deflnltlons ofD+, Eq. (40) X by X (X +|v) in the defi-
XEZ SE 4+ qR-j| B se (3g  nition of D, Eq.(4D), andXi, be+](X+J_IvJ) in S, Eq.
B; m;X;S;/ B, ’ (45). The phenomenological collision frequency is also nor-
malized to(),, i.e., vj=v;/{;. Naturally, this procedure is
and appropriate only as a first order correction because collisions
are not taken into account in the terms that multiply powers
d||55: AR”+ 5E+ +AR”,6E, Of A
2
= E 2 M_ i ct SE., I1l. PARAMETRIC INSTABILITIES FOR A BEAM
B, | T mX’s B HEATED PLASMA
T C Y2 1 To discuss the solutions of the dispersion relation for a
+ E '1—2— — C |6E_7¢, (39 multicomponent plasma, let us take the example of a beam
I m;Xi'S; Be heated fusion plasma in a tokamak. We consider a plasma
, composed of deuteriurmd], tritium (t), alpha particlega),
with and two counter-streaming deuterium beams, which we de-
5 ) note by beam 1 and beam 2. We normalize all quantities to
D _Y_:_ mmJ X+1 (40) those of deuterium, which is therefore chosen as the refer-
x4 A X2 ’ ence specie$=1 of the previous section. The calculations

_ an]
Dy {Be 2 ] (41

.:i 7, . YXOJ X+J (42
T 280 0T Yox, | AL

are carried out for numerical values close to the ones ex-
pected in an actual experiment, namelhyd—ut u,=0,
|Ubeam 2{ |Ubeam i 0.2, mnyg=n=1, =0.2, 7peam 1

= Tpeam 7=0.1, B4=0.024, [;=0.016, ,801:0.5, Boeam 1
=Bpeam 7=0.01, andB,=0.01.

We assume that the pump wave is excited by some strong
linear mechanism, such as by energetic particles in the case
of toroidal Alfven eigenmodes in a tokamak plasma, and that
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0.16 T T T T T T T
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0 ] | ] ] ]
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X

FIG. 1. Solution of the cold dispersion relation for waves propa- FIG. 2. Solution of the nonlinear dispersion relation, E2p),
gating parallel to the magnetic field, E®), in a plasma with equal ~ for zero amplitude of the pump wave, and f&y=0.024,5,=0.016,
densities of deuterium and tritium, anparticle density equal to 0.2  B2=0.5, Boeam = Bpeam 7=0.01. The origin of the diagram is at the
relative to the deuterium density, and two counterstreaming deutéfequency and wave number of the pump wa¥g=0.02 and
rium beams with speeds equal to 0.2 times the Alfapeed for  Yo=0.03582. The values of the other parameters are the same of

deuterium, and density equal to 0.1 relative to the deuterium derFig. 1. The curves labele8, are the sound waves supported mainly
sity. by the « particlesS,, deuterium beam$,, deuterium bulk ions

Sy, and tritiumS; . The curves labeleB , andD _ are right and left
linear damping is so weak that we can consider a constarircularly polarized waves, respectively. The intersections labeled 1
amplitude pump wave. Actually, the TAE's are expected tot0 6 indicate the energetically favorable crossings.
be strongly damped only near the lower shear Aifwon- . ) o ) o -
tinuum. Away from this limit, all damping mechanisms af- SIon relation occurring in conjugate pairs, i.e., instability. We

fect only the threshold value of the hot particle pressure gralind that the intersections labeled 1-6 give rise to instabili-
dient that excites the mode. ties; the first five lead to the excitation of a sound and an

The solution of the collisionles; =0) linear dispersion ~€lectromagnetic wave and the last one to an electromagnetic
relation for electromagnetic modes, E8), is plotted in Fig. modulational instability(13,14. This is an interaction be-
1. The curves in the first and fourth quadrants correspond tfVeen the pump and two electromagnetic sidebands mediated
left-hand circularly polarized waves propagating forward ancPY @ soundlike perturbation that is not an acoustic normal
backward, respectively. In the second and third quadrant§10de. It depends on coupling matrix elements that are qua-

they become right-hand circularly polarized waves propagatdratic with respect to the pump amplitude, in contrast with
ing backward and forward, respectively. The Alfveraves fthe other interactions that depend on matrix elements 'Ilnear
correspond to the limiK<1 along the branches crossing the I the amplitudesee Eq.(34)] that couple the pump with
origin. Without particle drifts, there should appear only two ON€ electromagnetic sideband and a sound mode. The gaps
resonances, at=1 for the deuterium and alpha species and2—>- for instance, are shown in Fig. 3 {d=0.1. The com-

at X=2/3 for the tritium species, and one stop band betweeRI€X roots across a gap can be readily evaluated and the
the tritium resonance and the cutoff frequency, given byMaximum grow.th rate _determlned. The results are presented
Y=0, X#0. The Doppler shifted resonances of the drifting'” Table I. The instability th'at results frolm the coupllng toa
ions modify substantially this picturEl2]. The stop band Sound wave supported mainly by the tritium species, gap 2,
below the cutoff frequency shrinks somewhat and another

one appears below the tritium resonance, as shown in Fig. 1. 0.070
To investigate the parametric couplings, we choose a pump
wave at the poiniXy,=0.02 andY,=0.03582 along the Al-
fvéen branch.

The solutions of the nonlinear dispersion relation, Eq.
(47), in the limit A—0 for »;=0 are shown in Fig. 2. The y0'050
graphical method of analysis is the one introduced in Ref.

[18] (see also Refd.13-15, 17). The forward(backward

propagating sound waves are indicated by the symbols 0.040
+5; (—95;) and the right and left circularly polarized waves
are indicated byp, andD _, respectively. The points num-
bered 1-6 represent the energetically favorable couplings be-

0.060

0.030 ] A | 1 |

0.004 0.008 0012 0.016 0.020 0.024

tween the different branches; they are all couplings between X
the D _ branch and diffrent sound waves, except crossing 6,
which is between théd, and D _ branches. To find the FIG. 3. Solution of the nonlinear dispersion relation, &),

crossings that give rise to parametric instabilities, we plot thehowing the gaps that are formed at the intersections 2 to 5, for
solutions of the dispersion relation fot+#0. The intersec- finite amplitude of the pump wave, i.e4=B/B,=0.1. The values
tions that become a gap indicate complex roots of the dispewf the other relevant quantities are the same as in Figs. 1 and 2.
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TABLE I. Maximum growth rates of the parametric instabilities
for A=0.1 and for the conditions of Figs. 2 and 3. Im (X}

0
Crossing Type Frequency Wave number Growth rate

D_; Speam —9.6X107°  9.6x1072 7x107°
D_:S 6.8x10°° 6x1072 103

D_; Sy 9.2x10°%  55x107? 8x107*
D_; Speam 1.4x1072  4.6x1072 2x107%
D_;S, 1.88x1072  3.78x10°2  5X107°
D_;D. 1072 1.8x10°2 7x107°

-0.0002

-0.0004

o0 WNBR

-0.0006
0.0088 0.0090 0.0092 0.0094  0.0096

has a very substantial growth rate, of the order of the real Re (X)
part of the frequency. The ones corresponding to the cou-

pling to a sound wave supported mainly by the deuterium Im (X)
species and by the forward propagating deuterium beam o
have also considerable growth rates.

Naturally, our results depend on our choice of the param-
eters; in particular, a pump amplitude=B/B,=0.1 is quite
high, somewhat above the limit of what is realistically ac-
ceptable. However, calculating the maximum growth kate
as a function of the pump intensity, we fing~.A, so that
the growth rate for smaller pump amplitude can be readily
estimated. This result is in agreement with the one obtained
analytically for small values of the pump intensity in the
single fluid MHD model[3], i.e., 0.0088 0.0090 00092 0.0094 Io.oo9<s

Re (X)

-0.0002

-0.0004

[vB
wi_i TKOVAA' (48) FIG. 4. Real and imaginary parts of the dispersion relation,
Eq. (47), plotted in the ImK) vs Re() diagram, for
Y=0.055,»=5x10"* and.4=0 in (a), and.A*=8.8x10 * in (b).

In spite of the simplicity of our model, it is instructive to . :
=D_=0 corresponds to crossing 3 of Fig. 2.

assess its consequences for actual experimental conditiong!€ double roottSq
Let us, for instance, consider the experiment on the excita-

tion of TAE modes by injection of an energetic deuteriumthreshold. As we shall see, the threshold effect is important
beam in a deuterium plasma, carried out in DIIFD®]. For  and depends on whether the electromagnetic daughter wave
the experimental parameters reported in IREJ], the Alfven s stable or unstable.

velocity isv ,=2.2x10° m/s and the theoretical value for the  In order to calculate the thresholds for the parametric in-
real part of the mode frequency iswy=v,/20R  stabilities, we include the collision frequencies in the linear
~4.4x1Q° rad/s, whereq is the safety factor an® is the  part of the dielectric tensor, as discussed at the end of the
major radius of the devicé&he experimental value is some- previous section. The calculational procedure is as follows.
what smaller and the mode spectrum is rather bro8@thce  First we fix the values of the collision frequencies and of the
in this case there is no tritium beam, we can consider onlyormalized wave numbéf at a given crossing of Fig. 2. The
the sound waves supported by the deuterium species, whigturves corresponding to the real and imaginary parts of the
corresponds to crossing 3 in Table |. Recalling that, in ourdispersion relation are then plotted in a K)(versus ReX)
case, the frequencies are normalized to the cyclotron frediagram; the roots of the dispersion relation are given by the
qguency of deuterium, and considering tha4=1 T in the  crossings of the two curves. In Fig. 4 we show such plots for
DIII-D experiment, it is easy to verify that the real frequency Y =0.055 andv=5Xx10"*. In reality, the sound waves in an

of this crossing is also 4x410° rad/s. The value of the linear infinite plasma for our conditions are heavily damped and a
growth rate of the TAE modey, , depends critically on the larger value of the collision frequency should be taken for
local value of the parametét for the fast particles, which is them. However, we have chosen this value taking into ac-
difficult to determine precisely in an experiment. However,count that in an actual experiment the damping is substan-
using the values of Table Il of Ref[19], we obtain tially reduced by the presence of a net plasma current. The
Y lwy~10"2 We find that for a pump amplitudel~10"2  value ofY is the one at the crossing labeled 3 in Fig. 2, for
the growth rate of the parametric instability is of the sameX=9.2x10"3. We see in Fig. &) drawn for.4=0, that there
order of the linear growth rate predicted for the TAE insta-is a double roott S;=D _ =0 with negative imaginary part,
bility. Therefore, one should expect that the parametric deeorresponding to damping introduced by collisions. Increas-
cay process sets a saturation on the mode amplitude of thisg the value of the pump, we can determine the threshold
order. However, this conclusion does not take into accounvalue, Ay, for which a solution of the dispersion relation
the fact that in the presence of wave damping in the daughtewith a positive imaginary part starts to appear, as shown in
waves, the parametric instability may have an amplitudeFig. 4(b) for 42=8.8x10 *. The double roott S;=D_=0
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case of a mode with poloidal mode numine+4, the ratio of

the damping rate to the real frequency is of the order of 2%.
This value would correspond to a significant phenomenologi-
B B cal collision frequency in our model, giving,~10 2 for
0.0006 . the parametric decay of TAE's by coupling to sound waves
to occur. However, as pointed out above, when the coupling
is with an excited TAE sideband wave, there should be no
threshold for the instability.

0.0008[— |

0.0004 .

T

0.0002
IV. DISCUSSION AND CONCLUSIONS

We have presented an analysis of the parametric decay of
cyclotron waves propagating parallel to the magnetic field in
multi component plasmas, including the effect of collisions,
which can be relevant for astrophysical and fusion plasmas.
We have explicitly shown that in the low frequency range
considered, the presence of drifting motions of subsets of the
total electron population does not influence the nonlinear
. o ] ] o ] (nor the linear dispersion relation if the electric current is
is split into two roots, one with a slightly positive imaginary zero, although the effect of possible temperature differences
part, indicating |nStab|||ty FO”OWing th|S procedure, we can between e|ectron groups remains_ The non"near dispersion
determine the value of the threshold as a function of thqe|ation for EICW, which has been presented in nondimen-
Fig. 5 we show the result for coupling 3, which has one ofmany new roots associated with the presence of multi-ion
the largest growth rates in the absence of collisions. Thepecies and their possible drifts. It is important to observe
curve can_be f't_tgd by a second order polynomialthat each ion species provides two new sound branches, and
Afnr=0.284y+3038°. From the single fluid model, in the that each sound branch may open a new channel for energy
limit of small collision frequency[3], one obtainsAy,~v.  transfer from the pump to the daughter waves. Moreover, the
result i35 valid only for normalized collision frequencies corresponding drift of the ion species. In the presence of a
v=10"". Since the electromagnetic and sound waves coulgpite pump amplitude the sound propagation is modified fur-
have different damping rates, one may consider the possibither as shown by Eq€18) and (33). This effect has been
ity of different collision frequencies in the model. From es- noted in Ref.[14], where an example of a pump induced
timates for simple parametric decay processes, one expectgupling is presentetsee Figs. 13 and 14 of RéfL4]). It is
mean of the collision frequencies. To check this ansatz in 3nly when the pump amplitude is above a certain valde
multifluid plasma, we have calculated the value of thepear 0.1 in the example of RdfL4]), and produces a para-
threshold amplitude as a function ofihe collision frequencymetric instability for larger values aft.
of the electromagnetic daughter waves,, for a fixed value The form of the equations for the nonlinear couplings,
of the collision frequency of the sound wave,=5x10"%  Egs.(28), (30), and (32), is more convenient than the one
We find thatA3,=0.015/vp + 1.70vp , showing that the ex- provided for two ion species in Refil3—15 and[17] not
pected behavior is valid for large collision frequencies, anly because the extension to more than two ion components
before. becomes cumbersome following the procedure described

Moreover, one also has to consider the possibility that thehere, but mainly because in the present formulation, with the
electromagnetic daughter wave is another unstable TABHinear dielectric components of the waves clearly in evi-
mode[9,10]. This situation can be simulated by assuming adence, we can easily introduce heuristic modifications in the
negative collisional frequency for one branch. In this casedispersion relation. Hence, we have been able to introduce
there is no threshold, even taking into account damping o€ollisions in the linear dielectric terms that simulate the ef-
the sound waves. In the case of the modulational instabilityfects of wave damping, so that the amplitude threshold of the
crossing 6 of Fig. 2 atX,Y)=(0.010, 0.018 and taking instability can be evaluated for any chosen wave coupling.
A=0.1, we find that in the absence of damping=0) there The important case of a fusion plasma heated by neutral
is a coupling betweerD, and D_ with a growth rate beam injection has been analyzed in detail. Because in our
y=7x10"°. When dampingr=5x10* is introduced the analysis we assume a circularly polarized wave propagating
instability is quenched, since the threshold fois very high  in a homogeneous multifluid current-free plasma, our results
(A>0.35. Nevertheless, when a daughter wave is an unhave to be considered only as a first step in understanding the
stable mode, the threshold vanishes, thus allowing for theffect of multion species and damping on the parametric
development of the instability for infinitesimal values.df  decay of toroidal Alfveé eigenmodes in fusion plasmas.
For the TAE modes, the main damping mechanism is couNaturally, tokamak plasmas are not current free. If one in-
pling to the continuum. From the analysis of this process bycludes a net current in a infinite homogeneous plasma, there
Rosenbluttet al.[20] and considering a parabolic profile for appears an instability for values of the wave number perpen-
the inverse rotational transform, we find that for a typicaldicular to the equilibrium magnetic field tending to zero and

0 | | | L L I
0 0.0001 0.0002 0.0003 0.0004 0.0005

Collision frequency

FIG. 5. Value of the threshold of the square of the pump ampli-
tude as a function of the collision frequency for the parametric
decay labeled 3 in Table I.
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very low frequencie$23]. However, this instability does not rates are concerned, are those related with the deuterium,
appear in a finite inhomogeneous plasma because of thetium, and beam sounds, all forward propagatiomssings
boundary conditions and thus we consider a current fre@, 3, and 4 of Table)l Our calculation gives an estimate of
plasma to eliminate this spurious effect. The question of pothe decay of a single excited Alfaeby coherent parametric
larization is more subtle. The TAE modes are global discreteoupling of sideband waves and ion sound. Thus, it comple-
eigenmodes that exist in gaps of the shear Alfeentinuum, ments the work of other authof8—11] in the sense that they
produced by toroidal coupling24]. Therefore, they exist have considered other possible saturation mechanisms. It
only in toroidal geometry and one is faced with the questionwas shown that if all product waves are damped, there is a
of how to simulate their main characteristics, viz., polariza-threshold on the pump amplitude for parametric decay, as
tion, in a simple homogeneous plasma model. In the slalexpected. However, in a scenario relevant to the TAE mode,
model approximation to toroidal geometry, the TAE's areone has to consider the possibility of an unstable electromag-
linearly polarized shear Alfwewaves withk, <k;, and the  netic daughter wave, in which case the parametric instability
eigenfunctions are strongly peaked in the radial directions triggered without threshold. These results points toward
[25]. If linearly polarized waves are considered in the homo-the interest of extending this analysis, including the evalua-
geneous model, there appear new couplings with longitudition of the threshold, and the presence of several acoustic
nal perturbations caused by the ponderomotive effect due tbranches, in a more realistic model of the TAE mo@egh

the Lorentz force. However, to simulate the peakedness afadial dependence and toroidicity effeécénd their nonlinear

the TAE eigenfunction, one would have to sum over manycouplings, a task, however, not likely to be trivial.

modes and with different values &f and probably these

couplings would average out. This difficult problem is ACKNOWLEDGMENTS
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