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The parametric couplings of a finite amplitude Alfve´n wave in a multicomponent plasma are investigated
including the effect of damping. The important case of a fusion plasma with deuterium, tritium, anda particle
ions, heated by neutral beam injection, is analyzed in detail. Because of the modification in the linear disper-
sion relation caused by the drifting ions, there appear many couplings to sound waves and an electromagnetic
modulational instability. The threshold on the pump amplitude is determined as a function of the damping
rates. The relevance of our results to the stability of toroidal Alfve´n eigenmodes in tokamaks is discussed.
@S1063-651X~96!01909-5#

PACS number~s!: 52.35.Bj, 52.35.Fp, 52.55.Pi

I. INTRODUCTION

The decay of large amplitude Alfve´n and ion cyloctron
waves by nonlinear coupling with sound waves and other
modes has been studied for a long time~See, e.g., Refs.
@1–6#!. Recently, this subject has received attention in two
different areas. Firstly, it was recognized that nonlinear cou-
pling may play a quite important role in the saturation of
toroidal eigenmodes~TAE’s! in tokamak fusion reactors, re-
ducing their potential danger for the achievement of ignition
@7–11#. On the other hand, space physicists realized that the
presence of drifting species in multicomponent plasmas af-
fects strongly the linear and nonlinear stability of ion cyclo-
tron and Alfvén waves, modifying substantially the picture
of physical processes that are relevant for the heating and
acceleration of particles in the solar wind@12–14#. The re-
search related to the saturation of TAE’s has been concen-
trated on the coupling between magnetohydrodynamic
modes assuming that a broad spectrum may be excited
@7–11#. Although in all these works kinetic and toroidal ef-
fects are taken into account, the influence of different spe-
cies, including drifting ones, which are present in fusion
plasmas heated by neutral beam injection, has not been con-
sidered. In space plasmas the geometry is rather simple and
the presence of many ionic species can be readily included in
the model. However, the study of parametric instabilities in
this context has been carried out without including damping,
which is very important for sound waves and for the daugh-
ter electromagnetic waves when their frequency is close to
the resonance of an ion component. The sound waves in
fusion plasmas may be not heavily damped, in particular the
ones supported mainly by a drifting species; but the daughter
Alfvén waves may occur close to the continuum and be
strongly damped. Therefore, in both areas the inclusion of
damping is essential to calculate the corresponding thresh-
olds on the pump amplitude and to evaluate the relevance of
the various parametric processes.

In this paper we investigate the parametric couplings of
ion-cyclotron and Alfve´n waves with sound waves in multi-
component plasmas described by fluid equations including

collisional damping to model the effect of kinetic and con-
tinuum damping. We consider waves propagating in the di-
rection of a constant magnetic field in an uniform plasma.
Our formulas are directly applicable to space plasmas. Al-
though our calculations do not include toroidal and kinetic
effects, they can also be considered as a first step towards the
evaluation of some processes affecting the decay of TAE’s in
fusion plasmas that have not been taken into account so far.
The dispersion relation for the parametric instabilities is de-
rived in the next section. We follow an approach that pre-
serves the structure of the linear dielectric tensor, making it
easier to introduce the influence of different physical mecha-
nisms, in particular collisional damping, than in derivations
available in the recent literature@13–17#. Collisions are con-
sidered as a first order effect and, therefore, are kept in the
linear part of the dielectric tensor only. We use a Krook
model with different collision frequencies for the various
species. Landau and continuum damping can be mocked up
by properly choosing the values of the different collision
frequencies. The numerical solutions of the dispersion rela-
tion are presented in Sec. III for the case of an Alfve´n wave
in a fusion plasma scenario. The presence of many ion spe-
cies, drifting ones in particular, with their associated sound
wave branches, opens up many channels for parametric cou-
plings. The saturation of TAE modes by mode coupling has
been considered by different authors. Hahm and Chen have
studied a many mode process in the random phase approxi-
mation@9#. Saturation occurs due to energy transfer down to
smaller wavelengths and eventually damping into the con-
tinuum. Vlad and co-workers have investigated a nonlinear
magnetohydrodynamics~MHD! process in which the inter-
action between two modes leads to a modification of the
equilibrium poloidal field such that the gap in the continuum
Alfvén spectrum is altered, causing a frequency shift and,
therefore, saturation@11#. The beat between two Alfve´n
waves has also been considered by Gang and Leboeuf@10#.
It is interesting to note that the saturation amplitudes encoun-
tered in these works are all of the same order, viz.,B̃r /Bz of
the order of a few percent, whereB̃r is the radial component
of the perturbed magnetic field andBz the equilibrium mag-
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netic field. It is important to stress that the process that we
consider here is rather different, i.e., coherent mode coupling
between electromagnetic and sound waves in the presence of
collisional damping. As we show in the numerical calcula-
tions, this mechanism may be relevant for amplitudes of the
perturbation also of the order of a few percent.

Continuum damping of the Alfve´n wave and Landau
damping of the sound wave are simulated by the inclusion of
a collision frequency in the corresponding linear terms of the
dispersion relation. We find that a threshold for the paramet-
ric process occurs only if the electromagnetic daughter wave
is damped. Otherwise, if one assumes that the daughter wave
is unstable, which corresponds to a negative collision fre-
quency, there is no threshold independent of the damping of
the sound wave. Discussions and conclusions are presented
in the last section.

II. DISPERSION RELATION

Let us first briefly review the derivation of the dispersion
relation for electromagnetic ion cyclotron waves~EICW!
propagating along the external magnetic fieldBz in an uni-
form plasma. The equation of motion for each species is
given by

msS ]Vs

]t
1Vzs

]Vs

]z D5qsSE1
1

c
Vs3BD2

“ps
ns

, ~1!

whereE andB are the electric and magnetic fields,Vs , qs ,
ms , and ns are the velocity, charge, mass, and density of
speciess, respectively,ps is the pressure, andc is the speed
of light ~cgs units are used throughout!. We assume that the
unperturbed plasma is quasineutral and current free. Repre-
senting the fields of the circularly polarized waves by
B'5Bx1 iBy5B exp(ik0z2 iv0t) and E'5Ex1 iEy
52 iE exp(ik0z2 iv0t), we solve Eq. ~1! taking
V's5Vxs1 iVys5V's

0 exp(ik0z2 iv0t). Combining Eq.~1!
with Maxwell’s equations, we obtain the dispersion relation
for low-frequency EICW, that is,

k0
25

4p

Bz
2 (

j

mjnj~v02k0Vj !
2

@12~v02k0Vj !/V j #
, ~2!

whereVj andV j5qjBz/mjc are the zero-order drift speed
~in thez direction! and cyclotron frequency of ion speciesj ,
respectively. In deriving Eq.~2!, we have taken the limit
me→0, and the sum on the right-hand side is over ion spe-
cies only.

The dispersion relation is valid for finite amplitude ion-
cyclotron waves. We consider one such wave as the ‘‘pump’’
wave. To investigate the nonlinear couplings, the wave-
plasma system is then perturbed by including small ampli-
tude longitudinal sound waves with wave numberk and
frequency v, i.e., dVzs5Re@dusexp(ikz2 ivt)#, dEz
5Re@dE exp(ikz2 ivt)#, and dns5Re@dñsexp(ikz2 ivt)#.
From the equation of continuity, we obtain

dns5nsReFkdus
vs

exp~ ikz2 ivt !G , ~3!

with 5vs5v2kVs . For adiabatic perturbations, pressure
and density are related bydps/ps5gsdns/ns , wheregs is the
ratio of specific heats.

In the following we will derive the complete dispersion
relation for the coupled waves in a way in which the nonlin-
ear contribution to the plasma dielectric tensor is explicitly
shown. We will present the derivation of the dispersion re-
lation for a collisionless plasma. The effect of collisions can
then be included by modifying the linear part of the disper-
sion relation.

The coupling of the sound waves with the pump wave
excites the daughter waves with wave numbersk65k06k
and frequenciesv65v06v. We define, accordingly,

dE'5dE1exp~ ik1z2 iv1t !1dE2* exp~ ik2* z2 iv2* t !, ~4!

dB'5dB1exp~ ik1z2 iv1t !1dB2* exp~ ik2* z2 iv2* t !, ~5!

dV's5dv1sexp~ ik1z2 iv1t !1dv2s* exp~ ik2* z2 iv2* t !,
~6!

d j's5d j1sexp~ ik1z2 iv1t !1d j2s* exp~ ik2* z2 iv2* t !.
~7!

For low frequency waves the electrons can be considered
massless, so that the left-hand side~LHS! of Eq. ~1! for
electrons is equal to zero. The perpendicular components
give

cdE'2 i ~Bzdv'e2VedB'2B'due!50 ~8!

~Ve , drift speed of electrons! and the parallel component is

cdEz1Im$V'e
0* dB'1B'dv'e* %1

c

ene
geKTe

]

]z
dne50.

~9!

The equation of continuity, Eq.~3!, gives a link betweendue
anddñe , due5vedñe/kne . Thus, one can obtaindv'e and
dne as functions of the electric and magnetic fields from Eqs.
~8! and ~9!.

An expression for the electron current can be derived
from Eq. ~8!,

d j6e5
cene
Bz

F iv6edE62
B

2c S v

k
2

v0

k0
D kdue

ve
G , ~10!

wherev6e5v62Vek6 . There may exist several groups of
electrons in the plasma, with different densities and drift ve-
locities. However, as we shall see immediately, under the
conditions we set here, a detailed specification of these elec-
tron populations is not necessary. In fact, the total electron
current contribution does not depend explicitly on the value
of the electron drifts. A sum of Eq.~10! over all possible
electron groups leads to

(
e

d j6e5
1

Bz
F ~6 i !

v6
S v6(

e
ene2k6(

e
eneVeD dE6

2
B

2 S v

k
2

v0

k0
D(

e
edñeG . ~11!
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As we can see only the total zero order electron current en-
ters in Eq. ~11!, and we assume that the configuration is
current free, so that(eneVe is balanced by the total longitu-
dinal zero order ion current. Similarly, due to charge neutral-
ity, (ene is balanced by the total zero order ion charge den-
sity. Therefore, the first two terms on the right-hand side
~RHS! of Eq. ~11! are canceled by similar contributions of
the total ion current,(d j6 j . In addition, the range of fre-
quencies considered here allows us to apply the quasineutral-
ity approximation; i.e.,(edñe is balanced by the ion charge
perturbation. Hence, also the third term on the RHS of Eq.
~11! is eliminated by a corresponding ion contribution if
Poisson’s equation is replaced by the charge neutrality con-
dition,

4p(
j
qjnj

dujk

v j
54p( edñe . ~12!

The RHS of this equation is computed from

dñe
ne

5
ie

kgeKTe
FdE1 B

Bz
~C1dE11C2dE2!G ~13!

@which follows from Eqs.~8! and ~9! by eliminatingdv'e#,
where

C6512k6v0 /v6k0 .

We note, as commented above, thatdñe does not depend on
any particular value of the electron drift velocities,Ve . Fi-
nally, the total perturbed electron charge density that enters
in Eq. ~12! is given by

4p(
e
edñe5

i

k FdE1 B

Bz
~C1dE1

1C2dE2!G(
e

4pe2ne
geKTe

. ~14!

In the preceding equation we are admitting the presence of
electron populations with different temperatures.

We can now focus our attention on the ion dynamics. We
obtain from Eq.~1!

dv6 j5
1

BzA6 j
S B

2A0 j
duj2

v6 j

k6
dB6D , ~15!

and

S 12
k2g jvS j

2

v j
2 D duj5

qj
mjv j

F idE1 B

c S v0 j

k0BzA0 j
~dB2

2dB1!1dv2 j2dv1 j D G , ~16!

wherev S j
2 [pj /njmj is the square of the thermal speed of the

j th species, v0 j[v02Vjk0 , v6 j5v62Vjk6 ,
A0 j[12(v0 j /V j ), andA6 j[12(v6 j /V j ). Eliminating the
dv ’s from Eq. ~15!, and using Faraday’s law,
v6dB656 ick6dE6 , we find that

duj5
icV j

v jSj
F 1Bz

dE1
B

Bz
2 ~Cj

1dE11Cj
2dE2!G , ~17!

where

Sj[12
g jvS j

2 k2

v j
2 1S BBz

D 2 1

A0 jA1 jA2 j
, ~18!

Cj
6[

k6

v6
S v6 j

k6A6 j
2

v0 j

k0A0 j
D . ~19!

Since

d j' j5qj~nj0dV' j1V' j
0 dnj !,

then

d j6 j5qjnj S dv6 j2
B

Bz

v0 j k

2A0 jv j k0
duj D . ~20!

Thus, from this relationship and Eq.~15!, we can express the
sum of ion contributions as

(
j

d j6 j5
7 ic

Bzv6
S v6(

j
qjnj2k6(

j
qjnjVj

1
c

Bz
(
j

mjnjv6 j
2

A6 j
D dE6

1
cB

2Bz
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j

mjnj
A0 j

S v6 j
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1v0 j2

kv0 j
2

k0v j
D duj
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B

2Bz
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k0
D(

j
qjdñ j . ~21!

Ampère’s law neglecting the displacement current term is

ck6dB6524p(
j

d j6 j24p(
e

d j6e . ~22!

We see that the perturbed electron current, Eq.~13!, can-
cels the ion current terms in Eq.~21! that are independent of
the ion mass. Therefore, Eq.~22! can be written as

Fk6
2 2(

j

4pmjnj
Bz
2A6 j

v6 j
2 GdE656

i

2
v6(

j

4pmjnj
Bz
2A0 j

3Fv0 j2
kv0 j

2

k0v j
1

v6 j

A6 j
G

3
B

c
duj , ~23!

where the sums are over ions only. These relationships can
be expressed as

~n6
2 2L6!dE656

i

c (
j
R6 jBduj , ~24!

with the following definitions:
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n6
2 [

c2k6
2

v6
2 , L6[
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Bz
2 (

j

mjnj
A6 j

v6 j
2

v6
2 , ~25!

and

R6 j[
c2

2v6

4pmjnj
Bz
2A0 j

Fv0 j2
kv0 j

2

k0v j
1

v6 j

A6 j
G . ~26!

Taking into account the expressions for theduj ’s given
by Eq. ~17!, and defining the parameterA[B/Bz , which
measures the amplitude of the ‘‘pump’’ wave relative to the
background magnetic field, we may write

~n1
2 2L1!dE152(
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S V jR1 jCj

1

v jSj
D B2

Bz
2 dE1
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S V jR1 jCj
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S V jR1 j

v jSj
D B
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and
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2 2L2!dE251(
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v jSj
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Bz
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S V jR2 j
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D B
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dE ~29!

[$A2R21dE11A2R22dE2

1AR2idE%. ~30!

In Eq. ~28!, the quantitiesR11 , R12 , andR1i represent the
coefficients ofA2dE1 , A2dE2 , andAdE in Eq. ~27!, re-
spectively. Similarly, in Eq.~30!, the symbolsR21 , R22 ,
andRi have the same meaning with respect to Eq.~29!.

An equation for the longitudinal component may be de-
rived from Eq.~12!. It can be expressed as

e idE5S (
j

4pqj
2njCj

1

mjv j
2Sj

2C1(
e

4pe2ne
geKTek

2D B

Bz
dE1

1S (
j

4pqj
2njCj

2

mjv j
2Sj

2C2(
e

4pe2ne
geKTek

2D B
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dE2

~31!

[$ARi1dE11ARi2dE2%, ~32!

with

e i5(
e

4pe2ne
geKTek

22(
j

4pqj
2nj

mjv j
2Sj

. ~33!

In the limit of zero pump intensity,B50, Eqs.~27!, ~29!,
and ~31! give the linear dispersion relations of sideband
EICW’s, n6

2 5L6 , and sound waves«i50. The LHS of Eqs.
~27!, ~29!, and~31! corresponds to the linear approximation
of the modes, and the RHS represents the coupling of the
modes with the pump.

In matrix form, Eqs.~28!, ~30!, and~32! become

S n1
2 2L11A2R11 A2R12 AR1i

2A2R21 n2
2 2L22A2R22 2AR2i

2ARi1 2ARi2 e i

D
3S dE1

dE2

dE
D 50 ~34!

The dispersion relation is thus given by

~n1
2 2L1!~n2

2 2L2!e i1A2$~Rs11e i1Ri1R1i!~n2
2 2L2!

2~R22e i1Ri2R2i!~n1
2 2L1!%1A4$~R12R21

2R11R22!e i1R12Ri1R2i1R21Ri2R1i

2R22Ri1R1i2R11Ri2R2i%

50. ~35!

We remark that no approximations have been made with
respect to the strength of the pump in the derivation of the
dispersion relation. In particular, the quantitiesSj , Eq. ~18!,
which appear in the definition ofei , have a term proportional
to A2, i.e., to the square of the normalized pump amplitude,
which can be significant for finite pump amplitude, and
modify the propagation of the sound waves. This effect is not
included, e.g., in Ref.@2# in view of the approximations
adopted there. The coefficientsC j

6 are formed by variables
corresponding to transverse waves only. Equation~35! con-
tains all the parametric couplings predicted by a multifluid
model and can be used to compute the growth rates of the
processes.

The nonlinear dispersion relation, Eq.~35!, which de-
scribes all the parametric instabilities generated by the EICW
pump, does not contain damping effects and, therefore, does
not give information about the thresholds of these instabili-
ties. However, it is possible to modify the LHS of Eqs.~27!,
~29!, and ~31! to include heuristically simple collision cor-
rections in the linear dielectric termsL6 and ei . The ratio-
nale is that since the instability thresholds are expected at
small values ofA, then the RHS of Eqs.~27!, ~29!, and~31!
are considered as corrections to the linear part. Therefore, the
addition of a damping effect is included in the linear~LHS!
terms only, while the RHS are maintained collisionless as
before. In the dynamic equations of ions, Eq.~1!, we add a
term2mjn jVj in the RHS, wherenj is a phenomenological
collision frequency to model wave damping. Then, the linear
equationn6

2 2L650 for the sidebands becomes
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~k06k!25
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2 (

j
njmj

@v06v2~k06k!Vj #@v06~v1 in j !2~k06k!Vj #

12@v06~v1 in j !2~k06k!Vj #/V j
, ~36!

which can be compared with Eq.~2! to see the changes in-
troduced by thead hoccollision term. A similar modification
must be introduced inei .

For the purpose of numerical analysis and applications,
we introduce normalized variables using the cyclotron fre-
quencyV1 and the Alfvén velocity,vA[(B z

2/4pn1m1)
1/2, of

speciesj51 as normalization values, following the notation
of some recent literature@13,14#. The normalized quantities
are then defined as,h j5nj /n1 , he5ne/n1 , m̄j5mj /m1 ,
q̄ j5qj /q1 , X[v/V1, Y[kVA/V1 , X0[v0/V1, Y0
[k0VA/V1 , Uj5Vj /VA , Xj[X2UjY, X0 j[X02UjY0 ,
X6[X06X, Y6[Y06Y, X6 j[X62UjY6 , Ā0 j
[12(m̄j /q̄ j )X0 j , Ā6 j[12(m̄j /q̄ j )X6 j , b j[mjv S j

2 /
m1v A

2, and be[geKTe/m1v A
2. The following relationships

hold:
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and
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X6
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FX0 j2
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G , ~42!
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S X6 j
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Y6X0
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Sj512
b j

m̄j
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1A2
1

Ā0 j Ā1 j Ā2 j

, ~45!

1

b̄e

5
e

q1
(
e
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1
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. ~46!

The dispersion relation is expressed as

D1D2D i1A2$~R1D i1Ri1R1i!D22~R2D i

1Ri2R2i!D1%1A4$~R12R212R1R2!D i

1R12Ri1R2i1R21Ri2R1i2R2Ri1R1i

2R1Ri2R2i%50, ~47!

in nondimensional variables suitable for numerical work.
The effect of damping, which will lead to thresholds for

the excitation of parametric instabilities, can be included in
the dispersion relation, Eq.~47!, by replacing X6 j

2 by
X6 j (X6 j6 i n̄ j ) and Ā6 j by 12(m̄j /q̄ j )(X6 j6 i n̄ j ) in the
definitions ofD6 , Eq. ~40!, X j

2 by Xj (Xj1 i n̄ j ) in the defi-
nition ofD i , Eq.~41!, andX6 j

2 by X6 j (X6 j6 i n̄ j ) in Sj , Eq.
~45!. The phenomenological collision frequency is also nor-
malized toV1, i.e., n̄ j5n j /V1 . Naturally, this procedure is
appropriate only as a first order correction because collisions
are not taken into account in the terms that multiply powers
of A.

III. PARAMETRIC INSTABILITIES FOR A BEAM
HEATED PLASMA

To discuss the solutions of the dispersion relation for a
multicomponent plasma, let us take the example of a beam
heated fusion plasma in a tokamak. We consider a plasma
composed of deuterium (d), tritium (t), alpha particles~a!,
and two counter-streaming deuterium beams, which we de-
note by beam 1 and beam 2. We normalize all quantities to
those of deuterium, which is therefore chosen as the refer-
ence speciesj51 of the previous section. The calculations
are carried out for numerical values close to the ones ex-
pected in an actual experiment, namely,Ud5Ut5Ua50,
uUbeam 1u5uUbeam 2u50.2, hd5h t51, ha50.2, hbeam 1
5hbeam 250.1, bd50.024, bt50.016, ba50.5, bbeam 1
5bbeam 250.01, andbe50.01.

We assume that the pump wave is excited by some strong
linear mechanism, such as by energetic particles in the case
of toroidal Alfvén eigenmodes in a tokamak plasma, and that
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linear damping is so weak that we can consider a constant
amplitude pump wave. Actually, the TAE’s are expected to
be strongly damped only near the lower shear Alfve´n con-
tinuum. Away from this limit, all damping mechanisms af-
fect only the threshold value of the hot particle pressure gra-
dient that excites the mode.

The solution of the collisionless~v̄ j50! linear dispersion
relation for electromagnetic modes, Eq.~2!, is plotted in Fig.
1. The curves in the first and fourth quadrants correspond to
left-hand circularly polarized waves propagating forward and
backward, respectively. In the second and third quadrants
they become right-hand circularly polarized waves propagat-
ing backward and forward, respectively. The Alfve´n waves
correspond to the limitX!1 along the branches crossing the
origin. Without particle drifts, there should appear only two
resonances, atX51 for the deuterium and alpha species and
atX52/3 for the tritium species, and one stop band between
the tritium resonance and the cutoff frequency, given by
Y50, XÞ0. The Doppler shifted resonances of the drifting
ions modify substantially this picture@12#. The stop band
below the cutoff frequency shrinks somewhat and another
one appears below the tritium resonance, as shown in Fig. 1.
To investigate the parametric couplings, we choose a pump
wave at the pointX050.02 andY050.03582 along the Al-
fvén branch.

The solutions of the nonlinear dispersion relation, Eq.
~47!, in the limit A→0 for n̄ j50 are shown in Fig. 2. The
graphical method of analysis is the one introduced in Ref.
@18# ~see also Refs.@13–15, 17#!. The forward~backward!
propagating sound waves are indicated by the symbols
1Sj (2Sj ) and the right and left circularly polarized waves
are indicated byD1 andD2 , respectively. The points num-
bered 1–6 represent the energetically favorable couplings be-
tween the different branches; they are all couplings between
theD2 branch and diffrent sound waves, except crossing 6,
which is between theD1 and D2 branches. To find the
crossings that give rise to parametric instabilities, we plot the
solutions of the dispersion relation forAÞ0. The intersec-
tions that become a gap indicate complex roots of the disper-

sion relation occurring in conjugate pairs, i.e., instability. We
find that the intersections labeled 1–6 give rise to instabili-
ties; the first five lead to the excitation of a sound and an
electromagnetic wave and the last one to an electromagnetic
modulational instability@13,14#. This is an interaction be-
tween the pump and two electromagnetic sidebands mediated
by a soundlike perturbation that is not an acoustic normal
mode. It depends on coupling matrix elements that are qua-
dratic with respect to the pump amplitude, in contrast with
the other interactions that depend on matrix elements linear
in the amplitude@see Eq.~34!# that couple the pump with
one electromagnetic sideband and a sound mode. The gaps
2–5, for instance, are shown in Fig. 3 forA50.1. The com-
plex roots across a gap can be readily evaluated and the
maximum growth rate determined. The results are presented
in Table I. The instability that results from the coupling to a
sound wave supported mainly by the tritium species, gap 2,

FIG. 1. Solution of the cold dispersion relation for waves propa-
gating parallel to the magnetic field, Eq.~2!, in a plasma with equal
densities of deuterium and tritium, ana particle density equal to 0.2
relative to the deuterium density, and two counterstreaming deute-
rium beams with speeds equal to 0.2 times the Alfve´n speed for
deuterium, and density equal to 0.1 relative to the deuterium den-
sity.

FIG. 2. Solution of the nonlinear dispersion relation, Eq.~39!,
for zero amplitude of the pump wave, and forbd50.024,bt50.016,
ba50.5,bbeam 15bbeam 250.01. The origin of the diagram is at the
frequency and wave number of the pump wave,X050.02 and
Y050.03582. The values of the other parameters are the same of
Fig. 1. The curves labeledSj are the sound waves supported mainly
by the a particlesSa , deuterium beamsSb , deuterium bulk ions
Sd , and tritiumSt . The curves labeledD1 andD2 are right and left
circularly polarized waves, respectively. The intersections labeled 1
to 6 indicate the energetically favorable crossings.

FIG. 3. Solution of the nonlinear dispersion relation, Eq.~47!,
showing the gaps that are formed at the intersections 2 to 5, for
finite amplitude of the pump wave, i.e.,A5B/Bz50.1. The values
of the other relevant quantities are the same as in Figs. 1 and 2.
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has a very substantial growth rate, of the order of the real
part of the frequency. The ones corresponding to the cou-
pling to a sound wave supported mainly by the deuterium
species and by the forward propagating deuterium beam
have also considerable growth rates.

Naturally, our results depend on our choice of the param-
eters; in particular, a pump amplitudeA5B/Bz50.1 is quite
high, somewhat above the limit of what is realistically ac-
ceptable. However, calculating the maximum growth ratevi
as a function of the pump intensity, we findvi;A, so that
the growth rate for smaller pump amplitude can be readily
estimated. This result is in agreement with the one obtained
analytically for small values of the pump intensity in the
single fluid MHD model@3#, i.e.,

v i5
1

2
Agb

2
k0VAA. ~48!

In spite of the simplicity of our model, it is instructive to
assess its consequences for actual experimental conditions.
Let us, for instance, consider the experiment on the excita-
tion of TAE modes by injection of an energetic deuterium
beam in a deuterium plasma, carried out in DIII-D@19#. For
the experimental parameters reported in Ref.@19#, the Alfvén
velocity isvA52.23106 m/s and the theoretical value for the
real part of the mode frequency isv05vA/2qR
'4.43105 rad/s, whereq is the safety factor andR is the
major radius of the device~the experimental value is some-
what smaller and the mode spectrum is rather broad!. Since
in this case there is no tritium beam, we can consider only
the sound waves supported by the deuterium species, which
corresponds to crossing 3 in Table I. Recalling that, in our
case, the frequencies are normalized to the cyclotron fre-
quency of deuterium, and considering thatB'1 T in the
DIII-D experiment, it is easy to verify that the real frequency
of this crossing is also 4.43105 rad/s. The value of the linear
growth rate of the TAE mode,gL , depends critically on the
local value of the parameterb for the fast particles, which is
difficult to determine precisely in an experiment. However,
using the values of Table II of Ref.@19#, we obtain
gL/v0;1022. We find that for a pump amplitudeA;1022

the growth rate of the parametric instability is of the same
order of the linear growth rate predicted for the TAE insta-
bility. Therefore, one should expect that the parametric de-
cay process sets a saturation on the mode amplitude of this
order. However, this conclusion does not take into account
the fact that in the presence of wave damping in the daughter
waves, the parametric instability may have an amplitude

threshold. As we shall see, the threshold effect is important
and depends on whether the electromagnetic daughter wave
is stable or unstable.

In order to calculate the thresholds for the parametric in-
stabilities, we include the collision frequencies in the linear
part of the dielectric tensor, as discussed at the end of the
previous section. The calculational procedure is as follows.
First we fix the values of the collision frequencies and of the
normalized wave numberY at a given crossing of Fig. 2. The
curves corresponding to the real and imaginary parts of the
dispersion relation are then plotted in a Im(X) versus Re(X)
diagram; the roots of the dispersion relation are given by the
crossings of the two curves. In Fig. 4 we show such plots for
Y50.055 andn̄5531024. In reality, the sound waves in an
infinite plasma for our conditions are heavily damped and a
larger value of the collision frequency should be taken for
them. However, we have chosen this value taking into ac-
count that in an actual experiment the damping is substan-
tially reduced by the presence of a net plasma current. The
value ofY is the one at the crossing labeled 3 in Fig. 2, for
X59.231023. We see in Fig. 4~a! drawn forA50, that there
is a double root1Sd5D250 with negative imaginary part,
corresponding to damping introduced by collisions. Increas-
ing the value of the pump, we can determine the threshold
value,Athr , for which a solution of the dispersion relation
with a positive imaginary part starts to appear, as shown in
Fig. 4~b! for A258.831024. The double root1Sd5D250

TABLE I. Maximum growth rates of the parametric instabilities
for A50.1 and for the conditions of Figs. 2 and 3.

Crossing Type Frequency Wave number Growth rate

1 D2 ; Sbeam 29.631023 9.631022 731025

2 D2 ; St 6.831023 631022 1023

3 D2 ; Sd 9.231023 5.531022 831024

4 D2 ; Sbeam 1.431022 4.631022 231024

5 D2 ; Sa 1.8831022 3.7831022 531025

6 D2 ; D1 1022 1.831022 731025

FIG. 4. Real and imaginary parts of the dispersion relation,
Eq. ~47!, plotted in the Im(X) vs Re(X) diagram, for
Y50.055,n̄5531024, andA50 in ~a!, andA258.831024 in ~b!.
The double root1Sd5D250 corresponds to crossing 3 of Fig. 2.
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is split into two roots, one with a slightly positive imaginary
part, indicating instability. Following this procedure, we can
determine the value of the threshold as a function of the
collision frequency for all instabilities listed in Table I. In
Fig. 5 we show the result for coupling 3, which has one of
the largest growth rates in the absence of collisions. The
curve can be fitted by a second order polynomial,
Athr

2 50.284n̄13038n̄2. From the single fluid model, in the
limit of small collision frequency@3#, one obtainsAthr;n̄.
Thus, our calculations indicate that the single fluid model
result is valid only for normalized collision frequencies
n̄*1023. Since the electromagnetic and sound waves could
have different damping rates, one may consider the possibil-
ity of different collision frequencies in the model. From es-
timates for simple parametric decay processes, one expects
the threshold amplitude to be proportional to the geometric
mean of the collision frequencies. To check this ansatz in a
multifluid plasma, we have calculated the value of the
threshold amplitude as a function of the collision frequency
of the electromagnetic daughter waves,n̄ D , for a fixed value
of the collision frequency of the sound wave,n̄s5531024.
We find thatAthr

2 50.015An̄D11.70n̄D , showing that the ex-
pected behavior is valid for large collision frequencies, as
before.

Moreover, one also has to consider the possibility that the
electromagnetic daughter wave is another unstable TAE
mode@9,10#. This situation can be simulated by assuming a
negative collisional frequency for one branch. In this case,
there is no threshold, even taking into account damping of
the sound waves. In the case of the modulational instability,
crossing 6 of Fig. 2 at (X,Y)5~0.010, 0.018!, and taking
A50.1, we find that in the absence of damping~n̄50! there
is a coupling betweenD1 and D2 with a growth rate
g5731025. When dampingn̄5531024 is introduced the
instability is quenched, since the threshold forA is very high
~A.0.35!. Nevertheless, when a daughter wave is an un-
stable mode, the threshold vanishes, thus allowing for the
development of the instability for infinitesimal values ofA.
For the TAE modes, the main damping mechanism is cou-
pling to the continuum. From the analysis of this process by
Rosenbluthet al. @20# and considering a parabolic profile for
the inverse rotational transform, we find that for a typical

case of a mode with poloidal mode numberm54, the ratio of
the damping rate to the real frequency is of the order of 2%.
This value would correspond to a significant phenomenologi-
cal collision frequency in our model, givingAthr'1022 for
the parametric decay of TAE’s by coupling to sound waves
to occur. However, as pointed out above, when the coupling
is with an excited TAE sideband wave, there should be no
threshold for the instability.

IV. DISCUSSION AND CONCLUSIONS

We have presented an analysis of the parametric decay of
cyclotron waves propagating parallel to the magnetic field in
multi component plasmas, including the effect of collisions,
which can be relevant for astrophysical and fusion plasmas.
We have explicitly shown that in the low frequency range
considered, the presence of drifting motions of subsets of the
total electron population does not influence the nonlinear
~nor the linear! dispersion relation if the electric current is
zero, although the effect of possible temperature differences
between electron groups remains. The nonlinear dispersion
relation for EICW, which has been presented in nondimen-
sional form ready for numerical applications, is enriched by
many new roots associated with the presence of multi-ion
species and their possible drifts. It is important to observe
that each ion species provides two new sound branches, and
that each sound branch may open a new channel for energy
transfer from the pump to the daughter waves. Moreover, the
sound speed of these acoustic branches is modified by the
corresponding drift of the ion species. In the presence of a
finite pump amplitude the sound propagation is modified fur-
ther as shown by Eqs.~18! and ~33!. This effect has been
noted in Ref.@14#, where an example of a pump induced
coupling is presented~see Figs. 13 and 14 of Ref.@14#!. It is
a crossing of a sound branch and an EICW mode that exists
only when the pump amplitude is above a certain value~A
near 0.1 in the example of Ref.@14#!, and produces a para-
metric instability for larger values ofA.

The form of the equations for the nonlinear couplings,
Eqs. ~28!, ~30!, and ~32!, is more convenient than the one
provided for two ion species in Refs.@13–15# and @17# not
only because the extension to more than two ion components
becomes cumbersome following the procedure described
there, but mainly because in the present formulation, with the
linear dielectric components of the waves clearly in evi-
dence, we can easily introduce heuristic modifications in the
dispersion relation. Hence, we have been able to introduce
collisions in the linear dielectric terms that simulate the ef-
fects of wave damping, so that the amplitude threshold of the
instability can be evaluated for any chosen wave coupling.

The important case of a fusion plasma heated by neutral
beam injection has been analyzed in detail. Because in our
analysis we assume a circularly polarized wave propagating
in a homogeneous multifluid current-free plasma, our results
have to be considered only as a first step in understanding the
effect of multiion species and damping on the parametric
decay of toroidal Alfve´n eigenmodes in fusion plasmas.
Naturally, tokamak plasmas are not current free. If one in-
cludes a net current in a infinite homogeneous plasma, there
appears an instability for values of the wave number perpen-
dicular to the equilibrium magnetic field tending to zero and

FIG. 5. Value of the threshold of the square of the pump ampli-
tude as a function of the collision frequency for the parametric
decay labeled 3 in Table I.
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very low frequencies@23#. However, this instability does not
appear in a finite inhomogeneous plasma because of the
boundary conditions and thus we consider a current free
plasma to eliminate this spurious effect. The question of po-
larization is more subtle. The TAE modes are global discrete
eigenmodes that exist in gaps of the shear Alfve´n continuum,
produced by toroidal coupling@24#. Therefore, they exist
only in toroidal geometry and one is faced with the question
of how to simulate their main characteristics, viz., polariza-
tion, in a simple homogeneous plasma model. In the slab
model approximation to toroidal geometry, the TAE’s are
linearly polarized shear Alfve´n waves withk'!ki , and the
eigenfunctions are strongly peaked in the radial direction
@25#. If linearly polarized waves are considered in the homo-
geneous model, there appear new couplings with longitudi-
nal perturbations caused by the ponderomotive effect due to
the Lorentz force. However, to simulate the peakedness of
the TAE eigenfunction, one would have to sum over many
modes and with different values ofk' and probably these
couplings would average out. This difficult problem is
avoided by considering circularly polarized waves. Further-
more, in real toroidal geometry, the shear Alfve´n waves are
not purely linearly polarized because of the variation of the
Alfvén speed in a magnetic surface@26# and the parametric
couplings that occur only for pure linear polarization should
not be relevant for these waves.

The multi-ion species model shows that there are five
parametric instabilities for the pump with five possible
acoustic modes. The most important ones, as far as growth

rates are concerned, are those related with the deuterium,
tritium, and beam sounds, all forward propagating~crossings
2, 3, and 4 of Table I!. Our calculation gives an estimate of
the decay of a single excited Alfve´n by coherent parametric
coupling of sideband waves and ion sound. Thus, it comple-
ments the work of other authors@9–11# in the sense that they
have considered other possible saturation mechanisms. It
was shown that if all product waves are damped, there is a
threshold on the pump amplitude for parametric decay, as
expected. However, in a scenario relevant to the TAE mode,
one has to consider the possibility of an unstable electromag-
netic daughter wave, in which case the parametric instability
is triggered without threshold. These results points toward
the interest of extending this analysis, including the evalua-
tion of the threshold, and the presence of several acoustic
branches, in a more realistic model of the TAE modes~with
radial dependence and toroidicity effects! and their nonlinear
couplings, a task, however, not likely to be trivial.
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